

Fig. 1. Molecular structure and numbering scheme for the title compound.
eters. 2983 unique reflections, $R_{\text {int }}=0.025,2515$ with $F>4 \sigma(F)$. At convergence $R=0.040, w R=0.049$ (on all data $R=0.049, w R=0.050$), $S=1.73$ for 217 parameters, $w=\left[\sigma^{2}(F)+0.0004 F^{2}\right]^{-1}, \Delta / \sigma<0.001$, data/parameter ratio 11.6:1, $(\Delta \rho)_{\text {max }}=0 \cdot 26,(\Delta \rho)_{\text {min }}$ $=-0.58 \mathrm{e} \AA^{-3}$. Scattering factors for all atoms from SHELXTL-Plus (Sheldrick, 1988).

Atomic parameters are given in Table 1,* bond distances and angles in Table 2, and Fig. 1 shows the molecule together with the atomic numbering scheme used.

Related literature. The cycloaddition reaction of chromone and diphenylnitrilimine resulted in the formation of the corresponding oxadiazole (Shawali, Eltawil \& Albar, 1984).

[^0]
References

Baruah, A. K., Prajapati, D. \& Sandhu, J. S. (1988). Tetrahedron, 44, 6137-6142.
Baruah, A. K., Prajapati, D. \& Sandhu, J. S. (1989). Tetrahedron, 45, 1231.
Shawali, A. S., Eltawil, B. A. \& Albar, H. A. (1984). Tetrahedron Lett. 25, 4139-4140.
Sheldrick, G. M. (1988). SHELXTL-Plus88 Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1990). C46, 1573-1575

9-Acridineethanol

By Pascal H. Toma, Keith A. Ray, Joseph G. Stowell and Stephen R. Byrn
Department of Medicinal Chemistry and Pharmacognosy, Purdue University, West Lafayette, Indiana 47907, USA

(Received 6 June 1989; accepted 23 February 1990)

Abstract

C}_{15} \mathrm{H}_{13} \mathrm{NO}, M_{r}=223 \cdot 28\), triclinic, $P \overline{1}, a=$ 7.537 (4), $\quad b=9.283$ (5), $\quad c=16.408$ (4) $\AA, \quad \alpha=$ 87.50 (3),$\quad \beta=83.44$ (3), $\quad \gamma=79.04$ (3) ${ }^{\circ}, \quad V=$ 1119 (1) $\AA^{3}, Z=4, D_{x}=1.325 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=0.78 \mathrm{~cm}^{-1}, F(000)=472, T=293 \mathrm{~K}$, $R=0.039$ for 1697 observed reflections. The two molecules per asymmetric unit are in virtually the same conformation. The acridine ring has the expected structure, but the side chain is in the gauche conformation. The acridine rings are stacked in pairs held together by hydrogen bonds involving the alcohol functionality and the nitrogen of the acridine ring.

Experimental. Crystals of the synthetic compound were prepared by reacting 9 -methylacridine with formaldehyde following published procedures 0108-2701/90/081573-03\$03.00
(Eisleb, 1936). Crystal: $0.59 \times 0.15 \times 0.14 \mathrm{~mm}$, amber needle from ethyl acetate. Data collected using $\omega-2 \theta$ scan techniques; scan rate varied from 2 to $20^{\circ} \min ^{-1}$ (in ω); 2915 intensities recorded on an

Enraf-Nonius CAD-4 diffractometer with graphitemonochromated Mo $K \alpha$ radiation, $2 \theta_{\text {max }}=45^{\circ},-7$ $\geq h \geq 8,-9 \geq k \geq 9,0 \geq l \geq 17$. Three check reflections measured every 97 reflections, 2% intensity © 1990 International Union of Crystallography

Table 1. Atom coordinates and isotropic temperature factors

	x	y	z	$B^{*}\left(\AA^{2}\right)$
O(12)	0.0179 (3)	$0 \cdot 2752$ (2)	0.8330 (1)	$5 \cdot 36$ (6)
$\mathrm{O}(12)$	0.4236 (3)	0.7831 (2)	0.3374 (1)	$5 \cdot 60$ (6)
$\mathrm{N}(10)$	$0 \cdot 1888$ (3)	-0.0806 (3)	1.0670 (1)	$4 \cdot 09$ (6)
$\mathrm{N}(10)$	0.3189 (3)	0.4151 (3)	0.5662 (1)	4.06 (6)
C(1)	0.4379 (4)	-0.1252 (4)	0.8588 (2)	4.52 (8)
C(2)	0.4742 (4)	-0.2740 (4)	0.8567 (2)	5.09 (8)
C(3)	0.4137 (4)	-0.3598 (4)	0.9236 (2)	$5 \cdot 36$ (9)
C(4)	0.3195 (4)	-0.2931 (4)	0.9914 (2)	4.68 (8)
C(5)	0.0646 (4)	0.1257 (4)	$1 \cdot 1480$ (2)	4.45 (8)
C(6)	0.0263 (4)	0.2722 (4)	1-1596 (2)	$5 \cdot 01$ (8)
C(7)	0.0753 (4)	0.3685 (4)	1.0955 (2)	$4 \cdot 97$ (8)
C(8)	0.1588 (4)	$0 \cdot 3168$ (3)	1.0223 (2)	$4 \cdot 43$ (8)
C(9)	0.2950 (3)	$0 \cdot 1019$ (3)	0.9344 (2)	3.78 (7)
C(1)	0.2018 (4)	0.3714 (4)	0.3568 (2)	4.81 (8)
$\mathrm{C}(11)$	0.3375 (4)	$0 \cdot 1985$ (4)	0.8609 (2)	$4 \cdot 54$ (8)
$\mathrm{C}(12)$	$0 \cdot 1960$ (4)	$0 \cdot 2082$ (4)	0.7995 (2)	$5 \cdot 09$ (8)
$\mathrm{C}(2)$	0.2430 (4)	0.2232 (4)	0.3530 (2)	$5 \cdot 28$ (8)
C(3)	0.3112 (4)	0.1372 (4)	0.4194 (2)	$5 \cdot 37$ (9)
C(4)	0.3338 (4)	0.2029 (4)	0.4885 (2)	4.82 (8)
$\mathrm{C}(4 a)$	0.2806 (3)	-0.1383 (3)	0.9970 (2)	3.81 (7)
C(5)	0.3056 (4)	$0 \cdot 6210$ (4)	0.6480 (2)	4.55 (8)
C(6)	0.2694 (4)	0.7676 (4)	0.6593 (2)	$5 \cdot 14$ (8)
$\mathrm{C}\left(7^{\prime}\right)$	0.2016 (4)	0.8651 (4)	0.5970 (2)	$5 \cdot 18$ (9)
C(8)	0.1737 (4)	0.8117 (4)	0.5244 (2)	$4 \cdot 66$ (8)
$\mathrm{C}(8 a)$	0.2044 (3)	0.1632 (3)	1.0080 (2)	$3 \cdot 60$ (7)
$\mathrm{C}(9)$	0.1875 (3)	0.5986 (3)	0.4348 (2)	3.84 (7)
$\mathrm{C}(9 a)$	0.3383 (3)	-0.0508 (3)	0.9291 (2)	3.71 (7)
$\mathrm{C}(10 a)$	0.1553 (3)	0.0665 (3)	1.0729 (2)	3.67 (7)
C(11)	0.1322 (4)	0.6968 (4)	0.3626 (2)	4.81 (8)
$\mathrm{C}\left(12^{\prime}\right)$	0.2976 (4)	0.7151 (4)	0.3021 (2)	$5 \cdot 18$ (8)
$\mathrm{C}\left(4 a^{\prime}\right)$	$0 \cdot 2906$ (3)	0.3575 (3)	0.4955 (2)	3.88 (7)
$\mathrm{C}\left(8 a^{\prime}\right)$	$0 \cdot 2110$ (3)	0.6586 (3)	0.5092 (2)	$3 \cdot 84$ (7)
$\mathrm{C}(9 a)$	0.2244 (3)	0.4462 (3)	0.4282 (2)	$3 \cdot 81$ (7)
(C10a)	0.2774 (4)	0.5616 (3)	0.5731 (2)	$3 \cdot 89$ (7)

* Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $B_{\text {eq }}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+\right.$ $\left.c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.

Table 2. Bond lengths (\AA) between non- H atoms with e.s.d.'s in parentheses

$\mathrm{O}(12)-\mathrm{C}(12)$	$1.426(4)$	$\mathrm{C}\left(1^{\prime}-\mathrm{C}\left(2^{\prime}\right)\right.$	$1.354(5)$
$\mathrm{O}\left(12^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$1.421(4)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(9 a^{\prime}\right)$	$1.430(4)$
$\mathrm{N}(10)-\mathrm{C}(4 a)$	$1.347(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.537(4)$
$\mathrm{N}(10)-\mathrm{C}(10 a)$	$1.346(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.409(5)$
$\mathrm{N}(10)-\mathrm{C}\left(4 a^{\prime}\right)$	$1.353(4)$	$\left.\mathrm{C}\left(3^{\prime}\right)-\mathrm{C} 4^{\prime}\right)$	$1.353(5)$
$\mathrm{N}(10)-\mathrm{C}\left(10 a^{\prime}\right)$	$1.343(4)$	$\mathrm{C}(4)-\mathrm{C}\left(4 a^{\prime}\right)$	$1.417(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.357(5)$	$\mathrm{C}(4 a)-\mathrm{C}(9 a)$	$1.426(4)$
$\mathrm{C}(1)-\mathrm{C}(9 a)$	$1.431(4)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.353(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.413(5)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(10 a^{\prime}\right)$	$1.422(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.355(5)$	$\mathrm{C}\left(6^{\prime}-\mathrm{C}\left(7^{\prime}\right)\right.$	$1.409(5)$
$\mathrm{C}(4)-\mathrm{C}(4 a)$	$1.416(5)$	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	$1.363(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.352(5)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(8 a^{\prime}\right)$	$1.422(5)$
$\mathrm{C}(5)-\mathrm{C}(10 a)$	$1.417(4)$	$\mathrm{C}(8 a)-\mathrm{C}(10 a)$	$1.425(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.413(5)$	$\mathrm{C}(9)-\mathrm{C}\left(111^{\prime}\right)$	$1.511(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.353(5)$	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8 a^{\prime}\right)$	$1.407(4)$
$\mathrm{C}(8)-\mathrm{C}(8 a)$	$1.425(4)$	$\mathrm{C}(9)-\mathrm{C}\left(9 a^{\prime}\right)$	$1.395(4)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.512(4)$	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}(12)$	$1.534(4)$
$\mathrm{C}(9)-\mathrm{C}(8 a)$	$1.404(4)$	$\mathrm{C}\left(4 a^{\prime}\right)-\mathrm{C}\left(9 a^{\prime}\right)$	$1.427(4)$
$\mathrm{C}(9)-\mathrm{C}(9 a)$	$1.398(4)$	$\mathrm{C}\left(8 a^{\prime}\right)-\mathrm{C}\left(10 a^{\prime}\right)$	$1.424(4)$

change. All of the 2915 reflections collected were unique, 1697 with $I>3 \cdot 0 \sigma(I)$ used for all calculations [program systems SHELX86 (Sheldrick, 1986) and Enraf-Nonius SDP (Enraf-Nonius, 1979)]. Cell constants refined from 25 reflections in the range 17 $<\theta<19^{\circ}$. No correction for absorption or extinction.

Structure solution by random-start multisolution direct methods. The final cycle of refinement on $|F|$ included 307 variable parameters and converged (largest parameter shift was 0.00 times its e.s.d.) with
$R=0.039, w R=0.046$ and $S=1.042$ (all non-H atoms anisotropic; H atoms were not refined, placed in calculated positions). Weighting scheme defined as in the Killean \& Lawrence (1969) method with terms of 0.02 and 1.0 . Maximum $\Delta / \sigma=0.00$. Maximum height on the Fourier ΔF map $\rho=0.20 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors from Cromer \& Waber (1974).

Table 1 lists atomic coordinates and isotropic temperature factors and Table 2 gives bond lengths.*

Fig. 1. View of the molecule showing the atomic labeling scheme (the second molecule in the asymmetric unit is labeled with primes). Thermal ellipsoids are scaled to the 50% probability level.

Fig. 2. View of the molecular packing. The axes are shown on the drawing.

The molecular structure is presented in Fig. 1 and Fig. 2 shows the molecular packing.

Related literature. This study represents the first in a series of acridines containing 9 -alkyl or aryl substituents which we are studying. These acridines are being linked to oligonucleotides in hopes of synthesizing new anti-AIDS or anti-cancer agents. The crystal studies provide important information which will form the basis for molecular modeling studies. Of special interest is the fact that the absolute values of the torsion angles in the two molecules are 98.32, $63 \cdot 20^{\circ}$ and $97 \cdot 22,62 \cdot 11^{\circ}$ (for $\mathrm{C} 8-\mathrm{C} 9-\mathrm{Cl1}-\mathrm{Cl} 2$ and $\mathrm{C} 9-\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{O} 2$) and are virtually identical, showing the similarity in the conformation of the two molecules per asymmetric unit. Few 9-alkyl or 9 -aryl acridines have been studied crystallographically. Pett, Rossi, Glusker, Stezowski \& Bogucka-Ledochowska (1982) have reported the structure of 9 -methyl-1-nitroacridine. Berman \& Neidle (1979) have reviewed the structural studies of acridine intercalators.

We gratefully thank Dr Phillip Fanwick, Department of Chemistry, Purdue University, for the use of the Enraf-Nonius CAD-4 diffractometer and his assistance in solving the crystal structure.

References

Berman, H. M. \& Neidle, S. (1979). Stereodyn. Mol. Syst. Proc. Symp. pp. 367-382.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Eisleb, O. (1936). Forsch. I. B. Farbenind. 3, 41-59 (Chem. Abstr. 31:58029).
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 1750.

Pett, V. B., Rossi, M., Glusker, J., Stezowski, J. J. \& Bogucka-Ledochowska, M. (1982). Bioorg. Chem. pp. 443-456.
Sheldrick, G. M. (1986). SHELX86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1990). C46, 1575-1576

Structure of Phenethylamine Hydrochloride

By Ernest Horn and Edward R. T. Tiekink
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, South Australia, 5001, Australia
and Graham P. Jones, B. Paul Naiola and Leslie G. Paleg
Department of Plant Physiology, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia

(Received 26 December 1989; accepted 26 February 1990)

Abstract

Phenethylammonium chloride, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{Cl}^{-}, M_{r}=157 \cdot 6$, orthorhombic, $P 2_{1} 2_{2} 2_{1}, a$ $=4.603(1), \quad b=5.906(1), \quad c=32.360(2) \AA, \quad V=$ 880 (1) $\AA^{3}, \quad D_{x}=1 \cdot 190 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=4$, Mo $K \bar{\alpha}$ radiation, $\lambda=0.7107 \AA, \mu=0.318 \mathrm{~mm}^{-1}$, $F(000)=336, \quad T=293(2) \mathrm{K}, \quad R=0.036$ for 724 observed reflections. The crystal structure determination of the title compound shows that the ethylamine side chain is fully extended and the $\mathrm{C}(6)$ -$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ torsion angle is -70°. Each of the three ammonium H atoms forms significant intermolecular contacts with symmetry-related chloride anions such that $\mathrm{Cl} \cdots \mathrm{H}$ are $2 \cdot 35,2 \cdot 27$ and $2 \cdot 20 \AA$.

Experimental. Phenethylamine was isolated from Acacia iteaphylla, a tall spreading shrub endemic to South Australia. Leaf tissue was extracted with 0108-2701/90/081575-02\$03.00
methanol/water ($70: 30 \mathrm{v} / \mathrm{v}$) and after removal of the methanol component (reduced pressure) the extract was subjected to ion-exchange chromatography on a column containing DOWEX 50W (H^{+}form) resin. After washing the column with water phenethylamine was eluted with $4 M \mathrm{HCl}$. The product was identified from both its ${ }^{1} \mathrm{H}\left[90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 1.5 ; \delta\right.$ $7.56(5 \mathrm{H}), 3.24(2 \mathrm{H})$ and $3.06(2 \mathrm{H})$, ref. tert$\mathrm{BuOH} \delta \quad 1.245]$ and ${ }^{13} \mathrm{C}\left(22.5 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pH}\right.$ $1 \cdot 5$, ${ }^{1} \mathrm{H}$ decoupled, $\delta 139 \cdot 45,131 \cdot 86,131 \cdot 70,130 \cdot 18$, 43.39 and $35 \cdot 54$, ref. tert- $\mathrm{BuOH} \delta \quad 32.45$) NMR spectra. Suitable crystals for X-ray study obtained from the slow evaporation of a methanol/diethyl ether solution of the compound; colourless needles, m.p. 493-494 K. Enraf-Nonius CAD-4F diffractometer controlled by a PDP8/A computer, graphite-monochromated Mo $K \bar{\alpha}$ radia© 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52648 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

